Vous êtes ici

Modélisation et simulation numérique des nano-transistors multi- grilles à matériaux innovants

MOREAU Mathieu
Résumé : 

Directeur de thèse : Jean-Luc AUTRAN Co-directrice : Daniela MUNTEANU Afin de continuer l'amélioration des performances du transistor MOSFET à l'échelle décananométrique, la recherche en microélectronique explore différentes solutions. Les travaux menés au cours de cette thèse se sont plus particulièrement orientés vers l'étude de transistors innovants avec une architecture Double-Grille (DGMOSFET) et l'utilisation de “nouveaux” matériaux tels que les diélectriques de grille à forte permittivité dits “high-κ” et les semiconducteurs à forte mobilité intrinsèque (Ge et III-V). Grâce au développement de codes de simulation numérique basés sur la résolution auto-cohérente du couple d'équations PoissonSchrödinger ou en utilisant le formalisme des fonctions de Green (NEGF), nous étudions le comportement électrique de différentes structures. Dans un premier temps, le fonctionnement des capacités Métal-Isolant-Semiconducteur et Métal-Isolant-Métal est simulé afin d'évaluer l'influence des propriétés des matériaux innovants et de la composition de l'empilement de grille sur les caractéristiques capacité-tension et sur le courant de fuite tunnel à travers la grille. Puis, les performances en termes de courant de drain face à la réduction de la longueur de grille (effets électrostatiques) et de l'épaisseur du canal de conduction (effet de confinement quantique) sont comparées dans le transistor MOS Double-Grille (à grilles indépendantes ou connectées) avec plusieurs matériaux aux propriétés très différentes (Si, Ge, GaAs et In0.53Ga0.47As). Enfin, nous avons développé une approche simplifiée (modélisation compacte) pour le calcul du courant de drain en dérive-diffusion ou balistique dans les transistors MOS Double-Grille à grilles indépendantes, validée par nos codes de simulation numérique.