Vous êtes ici

séminaires : Séminaire - Professeur François Légaré, Directeur de l’INRS-EMT

Un séminaire aura lieu le mardi 12 novembre 2024 à 14H30 - Salle de Conférences Xlim3 sur le sujet : « The ALLS user facility and pulse compression using multidimensional solitary states in hollow core fibers », présenté par le Professeur François Légaré, Directeur de l’INRS-EMT (Institut national de la recherche scientifique - Centre Énergie Matériaux Télécommunications) au Canada.

Abstract : The Advanced Laser Light Source (ALLS) is a unique user facility located at INRS-EMT (Varennes, Canada) counting on 40M CDN$ of investment since 2002. Since 2019, this facility has jointed the LaserNetUS network and is now funded as a national research infrastructure by the Canada Foundation for Innovation – Major Science Initiatives. These fundings ease access to the facility for academic and government users. In the first part of my talk, I will give an overview of the facility’s capabilities including the most powerful laser in Canada with 750 TW. In the second part, I will discuss novel approaches developed by my team for the generation of ultrashort pulses in the IR and mid-IR spectral range. This includes multidimensional solitary states in hollow core fibers [1,2] as well as other approaches including Frequency domain Optical Parametric Amplification [3,4]. Pulse characterization in the mid-IR spectral range will be presented [5].

[1] R. Safaei, G. Fan, O. Kwon, K. Légaré, P. Lassonde, B. E. Schmidt, H. Ibrahim, and F. Légaré (2020), High-energy multidimensional solitary states in hollow core fiber, Nature Phot. 14, 733-739.

[2] L. Arias, A. Longa, G. Jargot, A. Pomerleau, P. Lassonde, G. Fan, R. Safaei, P. Corkum, F. Boschini, H. Ibrahim, and F. Légaré, Few-cycle Yb laser source at 20 kHz using multidimensional solitary states in hollow-core fibers, Opt. Lett.  47, 3612-3615 (2022).

[3] A. Leblanc, G. Dalla-Barba, P. Lassonde, A. Laramée, B. Schmidt, E. Cormier, H. Ibrahim, and F. Légaré (2020), High-field mid-infrared pulses derived from frequency domain optical parametric amplification, Opt. Lett. 45, 2267-2270.

[4] G. Dalla-Barba, G. Jargot, P. Lassonde, S. Tóth, E. Haddad, F. Boschini, J. Delagnes, A. Leblanc, H. Ibrahim, E. Cormier, and F. Légaré, Mid-infrared frequency domain optical parametric amplifier, Opt. Express 31, 14954-14964 (2023).

[5] A. Leblanc, P. Lassonde, S. Petit, J.-C. Delagnes, E. Haddad, G. Ernotte, M. R. Bionta, V. Gruson, B. E. Schmidt, H. Ibrahim, E. Cormier, and F. Légaré (2019), Phase-matching-free pulse retrieval based on transient absorption in solids, Opt. Express 27, 28998.



Biography : François Légaré is a chemical physicist who specializes in developing novel approaches for ultrafast science and technologies, as well as biomedical imaging with nonlinear optics (Ph.D. in chemistry, 2004 – co-supervised by Profs. André D. Bandrauk and Paul B. Corkum). Full professor (2013 - …) at the Energy Materials Telecommunications center of the Institut national de la recherche scientifique (INRS-EMT), he was the director of the Advanced Laser Light Source (ALLS) until 2023. Since 2022, he is the director of the INRS-EMT center and CEO of ALLS. Under his scientific leadership, INRS has received in 2017 a grant of 13.9M CDN$ from the Canada Foundation for Innovation and the Quebec government, with 11.9M CDN$ to upscale the ALLS facility with high average power Ytterbium laser systems and advanced instrumentation for time-resolved material characterization. He is a Fellow and senior member of OPTICA and Fellow of the American Physical Society. He is a member of The College of New Scholars, Artists and Scientists of the Royal Society of Canada (2017). He was awarded the Herzberg medal from the Canadian Association of Physics in 2015 and the Rutherford Memorial Medal in physics of the Royal Society of Canada in 2016. He has contributed to about 200 articles in peer reviewed journals including prestigious ones such as Nature, Science, Nature Photonics, Nature Physics, Nature Communications, and Physical Review Letters. According to Google Scholar, his h-index is 62 with >15,000 citations.